Disruption of myocardial Gata4 and Tbx5 results in defects in cardiomyocyte proliferation and atrioventricular septation.

نویسندگان

  • Chaitali Misra
  • Sheng-Wei Chang
  • Madhumita Basu
  • Nianyuan Huang
  • Vidu Garg
چکیده

Mutations in GATA4 and TBX5 are associated with congenital heart defects in humans. Interaction between GATA4 and TBX5 is important for normal cardiac septation, but the underlying molecular mechanisms are not well understood. Here, we show that Gata4 and Tbx5 are co-expressed in the embryonic atria and ventricle, but after E15.5, ventricular expression of Tbx5 decreases. Co-localization and co-immunoprecipitation studies demonstrate an interaction of Gata4 and Tbx5 in the developing atria and ventricles, but the ventricular interaction declines after E14.5. Gata4(+/-);Tbx5(+/-) mouse embryos display decreased atrial and ventricular myocardial thickness at E11.5, prior to cardiac septation. To determine the cell lineage in which the interaction was functionally significant in vivo, mice heterozygous for Gata4 in the myocardium or endocardium and heterozygous for Tbx5 (Gata4(MyoDel/wt);Tbx5(+/-) and Gata4(EndoDel/wt);Tbx5(+/-), respectively) were generated. Gata4(MyoDel/wt);Tbx5(+/-) mice displayed embryonic lethality, thin myocardium with reduced cell proliferation, and atrioventricular septation defects similar to Gata4;Tbx5 compound heterozygotes while Gata4(EndoDel/wt);Tbx5(+/-) embryos were normal. Cdk4 and Cdk2, cyclin-dependent kinases required for myocardial development and septation were reduced in Gata4(+/-);Tbx5(+/-) hearts. Cdk4 is a known direct target of Gata4 and the regulation of Cdk2 in the developing heart has not been studied. Chromatin immunoprecipitation and transactivation studies demonstrate that Gata4 and Tbx5 directly regulate Cdk4 while only Tbx5 activates Cdk2 expression. These findings highlight the mechanisms by which disruption of the Gata4 and Tbx5 interaction in the myocardium contributes to cardiac septation defects in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development.

Congenital heart disease is the most common type of birth defect with an incidence of 1%. Previously, we described a point mutation in GATA4 that segregated with cardiac defects in a family with autosomal dominant disease. The mutation (G296S) exhibited biochemical deficits and disrupted a novel interaction between Gata4 and Tbx5. To determine if Gata4 and Tbx5 genetically interact in vivo, we ...

متن کامل

Congenital Heart Disease–Causing Gata4 Mutation Displays Functional Deficits In Vivo

Defects of atrial and ventricular septation are the most frequent form of congenital heart disease, accounting for almost 50% of all cases. We previously reported that a heterozygous G296S missense mutation of GATA4 caused atrial and ventricular septal defects and pulmonary valve stenosis in humans. GATA4 encodes a cardiac transcription factor, and when deleted in mice it results in cardiac bif...

متن کامل

Morphogenesis of the right ventricle requires myocardial expression of Gata4.

Mutations in developmental regulatory genes have been found to be responsible for some cases of congenital heart defects. One such regulatory gene is Gata4, a zinc finger transcription factor. In order to circumvent the early embryonic lethality of Gata4-null embryos and to investigate the role of myocardial Gata4 expression in cardiac development, we used Cre/loxP technology to conditionally d...

متن کامل

Foxf Genes Integrate Tbx5 and Hedgehog Pathways in the Second Heart Field for Cardiac Septation

The Second Heart Field (SHF) has been implicated in several forms of congenital heart disease (CHD), including atrioventricular septal defects (AVSDs). Identifying the SHF gene regulatory networks required for atrioventricular septation is therefore an essential goal for understanding the molecular basis of AVSDs. We defined a SHF Hedgehog-dependent gene regulatory network using whole genome tr...

متن کامل

Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis

Mutation of highly conserved residues in transcription factors may affect protein-protein or protein-DNA interactions, leading to gene network dysregulation and human disease. Human mutations in GATA4, a cardiogenic transcription factor, cause cardiac septal defects and cardiomyopathy. Here, iPS-derived cardiomyocytes from subjects with a heterozygous GATA4-G296S missense mutation showed impair...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 23 19  شماره 

صفحات  -

تاریخ انتشار 2014